|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.586604 |
| |
0.586334 |
| |
0.586279 |
| |
0.586082 |
| |
0.586060 |
| |
0.586057 |
| |
0.585969 |
| |
0.585867 |
| |
0.585492 |
| |
0.585477 |
| |
0.585318 |
| |
0.584800 |
| |
0.584769 |
| |
0.584416 |
| |
0.584339 |
| |
0.584139 |
| |
0.584033 |
| |
0.583815 |
| |
0.583647 |
| |
0.583468 |
| |
0.583208 |
| |
0.583146 |
| |
0.583037 |
| |
0.582947 |
| |
0.582776 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|