|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.599190 |
| |
0.599040 |
| |
0.598980 |
| |
0.598980 |
| |
0.598798 |
| |
0.598768 |
| |
0.598612 |
| |
0.598552 |
| |
0.598474 |
| |
0.598326 |
| |
0.598216 |
| |
0.598212 |
| |
0.598194 |
| |
0.597992 |
| |
0.597992 |
| |
0.597903 |
| |
0.597791 |
| |
0.597791 |
| |
0.597754 |
| |
0.597621 |
| |
0.597425 |
| |
0.597233 |
| |
0.596980 |
| |
0.596518 |
| |
0.596490 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|