|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.593932 |
| |
0.593793 |
| |
0.593761 |
| |
0.593736 |
| |
0.593494 |
| |
0.593358 |
| |
0.593292 |
| |
0.593212 |
| |
0.593169 |
| |
0.592942 |
| |
0.592918 |
| |
0.592863 |
| |
0.592842 |
| |
0.592763 |
| |
0.592657 |
| |
0.592427 |
| |
0.592253 |
| |
0.592160 |
| |
0.592151 |
| |
0.592142 |
| |
0.592134 |
| |
0.592042 |
| |
0.591998 |
| |
0.591998 |
| |
0.591962 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|