|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.507639 |
| |
0.507476 |
| |
0.507466 |
| |
0.507295 |
| |
0.507237 |
| |
0.507208 |
| |
0.507197 |
| |
0.507194 |
| |
0.507113 |
| |
0.507108 |
| |
0.507091 |
| |
0.506842 |
| |
0.506780 |
| |
0.506633 |
| |
0.506604 |
| |
0.506572 |
| |
0.506444 |
| |
0.506304 |
| |
0.506299 |
| |
0.506291 |
| |
0.506239 |
| |
0.506180 |
| |
0.506134 |
| |
0.505987 |
| |
0.505923 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|