|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.917597 |
| |
0.917574 |
| |
0.917227 |
| |
0.917226 |
| |
0.917170 |
| |
0.917048 |
| |
0.917020 |
| |
0.916790 |
| |
0.916765 |
| |
0.916621 |
| |
0.916157 |
| |
0.916109 |
| |
0.916023 |
| |
0.915939 |
| |
0.915939 |
| |
0.915906 |
| |
0.915732 |
| |
0.915576 |
| |
0.915055 |
| |
0.914945 |
| |
0.914901 |
| |
0.914901 |
| |
0.914868 |
| |
0.914865 |
| |
0.914803 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|