|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.817378 |
| |
0.817020 |
| |
0.816865 |
| |
0.816845 |
| |
0.816541 |
| |
0.816047 |
| |
0.815538 |
| |
0.815495 |
| |
0.815457 |
| |
0.815298 |
| |
0.814890 |
| |
0.814338 |
| |
0.814283 |
| |
0.814165 |
| |
0.814145 |
| |
0.813288 |
| |
0.813274 |
| |
0.812823 |
| |
0.812527 |
| |
0.812527 |
| |
0.812218 |
| |
0.811934 |
| |
0.811293 |
| |
0.811216 |
| |
0.811177 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|