|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.136513 |
| |
0.136446 |
| |
0.136432 |
| |
0.136424 |
| |
0.136288 |
| |
0.136280 |
| |
0.136262 |
| |
0.136181 |
| |
0.136087 |
| |
0.136073 |
| |
0.136055 |
| |
0.136020 |
| |
0.135995 |
| |
0.135991 |
| |
0.135973 |
| |
0.135860 |
| |
0.135801 |
| |
0.135800 |
| |
0.135770 |
| |
0.135767 |
| |
0.135696 |
| |
0.135648 |
| |
0.135645 |
| |
0.135640 |
| |
0.135605 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|