|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.137639 |
| |
0.137560 |
| |
0.137550 |
| |
0.137465 |
| |
0.137446 |
| |
0.137446 |
| |
0.137327 |
| |
0.137318 |
| |
0.137317 |
| |
0.137158 |
| |
0.137120 |
| |
0.137112 |
| |
0.137093 |
| |
0.137068 |
| |
0.137068 |
| |
0.137063 |
| |
0.137044 |
| |
0.137011 |
| |
0.137006 |
| |
0.136944 |
| |
0.136730 |
| |
0.136726 |
| |
0.136695 |
| |
0.136661 |
| |
0.136524 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|