|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.819534 |
| |
0.819473 |
| |
0.818786 |
| |
0.818603 |
| |
0.818074 |
| |
0.817888 |
| |
0.817443 |
| |
0.816969 |
| |
0.816533 |
| |
0.816301 |
| |
0.816234 |
| |
0.816234 |
| |
0.815405 |
| |
0.815165 |
| |
0.815163 |
| |
0.815018 |
| |
0.814622 |
| |
0.814205 |
| |
0.814121 |
| |
0.813859 |
| |
0.813859 |
| |
0.813829 |
| |
0.812628 |
| |
0.811985 |
| |
0.811954 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|