|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.218532 |
| |
0.218524 |
| |
0.218396 |
| |
0.218385 |
| |
0.218364 |
| |
0.218204 |
| |
0.218196 |
| |
0.217824 |
| |
0.217822 |
| |
0.217725 |
| |
0.217240 |
| |
0.217118 |
| |
0.216878 |
| |
0.216524 |
| |
0.215834 |
| |
0.215569 |
| |
0.215243 |
| |
0.215088 |
| |
0.215052 |
| |
0.214880 |
| |
0.214878 |
| |
0.214655 |
| |
0.214227 |
| |
0.214227 |
| |
0.214000 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|