|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.353901 |
| |
0.353815 |
| |
0.353812 |
| |
0.353513 |
| |
0.353435 |
| |
0.353423 |
| |
0.353238 |
| |
0.352976 |
| |
0.352776 |
| |
0.352716 |
| |
0.352677 |
| |
0.352637 |
| |
0.352356 |
| |
0.352313 |
| |
0.352016 |
| |
0.351977 |
| |
0.351756 |
| |
0.351735 |
| |
0.351591 |
| |
0.351454 |
| |
0.351447 |
| |
0.351410 |
| |
0.351256 |
| |
0.351225 |
| |
0.351207 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|