|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.409694 |
| |
0.409679 |
| |
0.409679 |
| |
0.409635 |
| |
0.409600 |
| |
0.409436 |
| |
0.409394 |
| |
0.409324 |
| |
0.409289 |
| |
0.409239 |
| |
0.409183 |
| |
0.409144 |
| |
0.409071 |
| |
0.409026 |
| |
0.409026 |
| |
0.408947 |
| |
0.408927 |
| |
0.408822 |
| |
0.408813 |
| |
0.408552 |
| |
0.408540 |
| |
0.408405 |
| |
0.408350 |
| |
0.408290 |
| |
0.408269 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|