|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
-0.620433 |
| |
-0.620444 |
| |
-0.620566 |
| |
-0.620567 |
| |
-0.620568 |
| |
-0.620641 |
| |
-0.620668 |
| |
-0.620686 |
| |
-0.620687 |
| |
-0.620704 |
| |
-0.620734 |
| |
-0.620745 |
| |
-0.620831 |
| |
-0.620842 |
| |
-0.620864 |
| |
-0.620892 |
| |
-0.620952 |
| |
-0.621016 |
| |
-0.621063 |
| |
-0.621118 |
| |
-0.621179 |
| |
-0.621236 |
| |
-0.621237 |
| |
-0.621266 |
| |
-0.621306 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|