|
|
Correlation analysis helps identify the relationship between two or more companies, showing how they move about each other. It helps assess patterns, manage risk, and improve decision-making by revealing which assets correlate positively or negatively.
|
|
|
|
| Symbol | Correlation |
| |
0.146239 |
| |
0.145987 |
| |
0.145821 |
| |
0.145769 |
| |
0.145769 |
| |
0.145621 |
| |
0.145523 |
| |
0.145406 |
| |
0.145381 |
| |
0.145200 |
| |
0.145200 |
| |
0.145105 |
| |
0.145105 |
| |
0.145032 |
| |
0.145032 |
| |
0.144879 |
| |
0.144873 |
| |
0.144832 |
| |
0.144800 |
| |
0.144773 |
| |
0.144723 |
| |
0.144664 |
| |
0.144640 |
| |
0.144630 |
| |
0.144554 |
|
|
|
|
|
Stock Correlation - Explanation
Stock Correlation is the statistical measure of the relationship between two stocks. The correlation coefficient ranges between -1 and +1. A correlation of +1 implies that the two stocks will move in the same direction 100% of the time. A correlation of -1 implies the two stocks will move in the opposite direction 100% of the time. A correlation of zero implies that the relationship between the stocks is completely random. Correlations do not always remain stable and can even change on a daily basis. Correlation analysis can help you to diversify your positions. An imperfect correlation between two different stocks allows for more diversification and marginally lower risk.
|